Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

c-5-Hydroxy-r-2,c-4-bis(isopropoxycarbonyl)-t-5-methyl-t-3-phenylcyclohexanone

R. Hema, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}{ }^{*}$ K. Ravikumar, ${ }^{\text {b }}$ K. Pandiarajan ${ }^{\mathrm{c}}$ and K. Murugavel ${ }^{\text {C }}$

${ }^{\mathrm{a}}$ School of Physics, Bharathidasan University, Tiruchirappalli 620024 , India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.104$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}$, the cyclohexanone ring exhibits a chair conformation. The isopropoxy carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into two-dimensional sheets parallel to the $b c$ plane.

Comment

Pharmaceutical preparations such as aminomethylphenylcyclohexanone derivatives used in the treatment of pain, inflammatory reactions, allergic reactions, depression, drug abuse, alcohol abuse, gastritis, cardiovascular disease, respiratory tract disease, coughing, mental illness, epilepsy, urinary incontinence, itching and diarrhoea has been the subject of patents (Puetz et al., 2003). Cyclohexanone derivatives penetrate into the stratum corneum and alter the skin permeability of indomethacin by fluidizing or modifying the hard hydrophobic barrier of the corneum (Danyi et al., 1989). In view of these important applications, an X-ray crystal structure determination of the title compound, (I), has been undertaken.

(I)

In (I) (Fig. 1), the cyclohexanone ring adopts a chair conformation. A similar conformation was observed in related structures (Mootz \& Berking, 1969; Groth, 1972; Bocelli, 1981; Spek et al., 1990; Ravikumar \& Mehdi, 1993). The mean value [55.4 (6) ${ }^{\circ}$] of the endocyclic torsion angles of the cyclohexanone ring in (I) shows that it is slightly more puckered than the idealized cyclohexanone ring [54.1 (3) ${ }^{\circ}$, MM2 calculation; Allinger, 1977). The values of the puckering parameters (Cremer \& Pople, 1975) of the cyclohexanone ring [$Q=$ 0.567 (2) $\AA, \theta=177.34(14)^{\circ}$ and $\left.\varphi=62(3)^{\circ}\right]$ compare well with the values reported by Ravikumar \& Mehdi (1993).

A comparison of the conformation of (I) with those in the related compounds 4-ethoxycarbonyl-3-hydroxy-3-phenylcyclohexanone, (II) (Hernández-Ortega et al., 2001), 4-ethoxycarbonyl-3-ethoxypropanoyl-3-phenylcyclohexanone,

Received 3 January 2006 Accepted 16 January 2006 Online 25 January 2006

Figure 1

A view of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2
A packing diagram of (I), showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines.
(III) (Brunner \& Maas, 1995), (4-cyano-4-tert-butoxycarbonyl-3,5-diphenylcyclohexanone, (IV) (Rowland et al., 1998), and 5-hydroxy-5-methyl-2,4-bis(methylcarbonyl)-3-(3-nitrophenyl)cyclohexanone, (V) (Ravikumar \& Mehdi, 1993), shows the following features. In (I), the two isopropoxycarbonyl groups at C 2 and C 4 are substituted in β-equatorial positions (Table 1). The phenyl ring (ring A) attached to C3 in (I), (II), (IV) and (V) adopts an α equatorial orientation, while in (III) it is in a β axial position. In (I) and (V), the methyl and hydroxy groups at C 5 are oriented in equatorial and β axial positions, respectively. The mean planes through $\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4$
and C6 and ring A make a dihedral angle of $73.76(5)^{\circ}$. This value is smaller than those reported for (II) [86.09 (8) ${ }^{\circ}$, (III) $\left(81.4^{\circ}\right)$ and $(\mathrm{V})\left(77^{\circ}\right)$. The dihedral angles between ring A and the carboxy groups $\mathrm{C} 7 / \mathrm{O} 21 / \mathrm{O} 22$ and $\mathrm{C} 11 / \mathrm{O} 41 / \mathrm{O} 42$ are $82.84(10)$ and $54.30(15)^{\circ}$, respectively. The latter value is comparable to that reported for (II) $\left(54.9^{\circ}\right)$, (IV) $\left(58.3^{\circ}\right)$ and (V) $\left(53.6^{\circ}\right)$. These two carbonyl groups in (I) are twisted in different directions with $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 11-\mathrm{O} 41$ and $\mathrm{C} 1-\mathrm{C} 2-$ $\mathrm{C} 7-\mathrm{O} 21$ torsion angles of $55.50(16)$ and $-90.69(16)^{\circ}$, respectively, facilitating the formation of an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). The corresponding torsion angles in (V) are $49.2(5)$ and $-79.7(4)^{\circ}$, respectively.

In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju, 1997; Bernstein et al., 1995; Table 2) link the molecules into two-dimensional sheets parallel to the $b c$ plane (Fig. 2)

Experimental

A mixture of isopropyl acetoacetate (100 mmol), benzaldehyde $(50 \mathrm{mmol})$ and methylamine $(50 \mathrm{mmol})$ in ethanol $(50 \mathrm{ml})$ was heated to boiling. The reaction mixture was allowed to stand overnight. The separated solid was filtered off and purified by recrystallization from ethanol (yield 80%, m.p. 463 K).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}$
$M_{r}=376.43$
Monoclinic, C2/c
$a=35.775$ (6) A
$b=5.7948$ (10) \AA
$c=20.174$ (3) A
$\beta=99.893(3)^{\circ}$
$V=4120.1(12) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.214 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8602 \\
& \quad \text { reflections } \\
& \theta=2.2-27.9^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=273(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.19 \times 0.11 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
18792 measured reflections
3617 independent reflections
3175 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.104$
$S=1.05$

$$
\begin{aligned}
& R_{\text {int }}=0.019 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-42 \rightarrow 42 \\
& k=-6 \rightarrow 6 \\
& l=-23 \rightarrow 23
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0482 P)^{2}\right. \\
& \quad+2.014 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected torsion angles (${ }^{\circ}$).

C6-C1-C2-C7	$178.36(11)$	C16-C3-C4-C5	$179.96(10)$
C1-C2-C3-C16	$-176.05(11)$	C11-C4-C5-C6	$-177.33(11)$
C7-C2-C3-C4	$-172.92(10)$	O51-C5-C6-C1	$-61.73(14)$
C2-C3-C4-C11	$176.00(10)$	C15-C5-C6-C1	$179.52(12)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 21^{\text {i }}$	0.98	2.60	3.4678 (16)	148
C17-H17...O21 ${ }^{\text {i }}$	0.93	2.57	3.4759 (18)	166
C15-H152 ${ }^{\text {O O }} 51^{\text {i }}$	0.96	2.59	3.404 (2)	143
C19-H19...O51 ${ }^{\text {ii }}$	0.93	2.55	3.4005 (18)	152
O51-H51 . O 41	0.82	2.08	2.7724 (14)	142

Symmetry codes: (i) $x, y+1, z$; (ii) $x,-y+1, z-\frac{1}{2}$.
The methyl H atoms were constrained to an ideal geometry ($\mathrm{C}-$ $\mathrm{H}=0.96 \AA$), with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bond. The hydroxy H atom was positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were positioned geometrically in idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and refined as riding with $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.05; Farrugia, 1999); software used to prepare material for publication: SHELXL97.

RH thanks the UGC, India, for the award of an FIP 20052007 fellowship. RH also thanks Dr B. Sridhar for his help in the data collection.

References

Allinger, N. L. (1977). J. Am. Chem. Soc. 99, 8127-8134.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bocelli, G. (1981). Acta Cryst. B37, 1249-1252.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Brunner, M. \& Maas, G. (1995). Synthesis, pp. 957-963.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Danyi, Q., Takayama, K. \& Nagai, T. (1989). Drug. Des. Deliv. 4, 323-330.
Desiraju, G. R. (1997). Aspects of Crystallography in Molecular Biology, edited by S. Parthasarathy \& J. P. Glusker, pp. 219-223. New Delhi: New Age International Publishers.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Groth, P. (1972). Acta Chem. Scand. 26, 3131-3140.
Hernández-Ortega, S., Jimenez-Cruz, F., Rios-Olivares, H. \& Rubio-Arroyo, M. (2001). Acta Cryst. C57, 425-427.

Mootz, V. D. \& Berking, B. (1969). Acta Cryst. B25, 828-831.
Puetz, C., Buschmann, H. \& Koegel, B. (2003). US Patent Application No. 20030096811.

Ravikumar, K. \& Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.
Rowland, A. T., Filla, S. A., Coutlangus, M. L., Winemilla, M. D., Chamberlin, M., Czulada, G. \& Johnson, S. D. (1998). J. Org. Chem. 63, 4359-4365.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L., Duisenberg, A. J. M., van den Heuvel, H. L. A., Boer Rookhuizen, R. \& Bosch, R. (1990). Acta Cryst. C46, 630-631.

